Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.07.21249238

Résumé

Serology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format. The platform consists of three components: ELISA-array of printed proteins, a commercial or home-built plate reader, and modular python software for automated analysis (pysero). We validate the platform by comparing antibody titers against the SARS-CoV-2 Spike, receptor binding domain (RBD), and nucleocapsid (N) in 114 sera from COVID-19 positive individuals and 87 pre-pandemic COVID-19 negative sera. We report data with both a commercial plate reader and an inexpensive, open plate reader (nautilus). Receiver operating characteristic (ROC) analysis of classification with single antigens shows that Spike and RBD classify positive and negative sera with the highest sensitivity at a given specificity. The platform distinguished positive sera from negative sera when the reactivity of the sera was equivalent to the binding of 1 ng mL-1 RBD-specific monoclonal antibody. We developed normalization and classification methods to pool antibody responses from multiple antigens and multiple experiments. Our results demonstrate a performant and accessible pipeline for multiplexed ELISA ready for multiple applications, including serosurveillance, identification of viral proteins that elicit antibody responses, differential diagnosis of circulating pathogens, and immune responses to vaccines.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.03.21251639

Résumé

Serosurveillance studies are critical for estimating SARS-CoV-2 transmission and immunity, but interpretation of results is currently limited by poorly defined variability in the performance of antibody assays to detect seroreactivity over time in individuals with different clinical presentations. We measured longitudinal antibody responses to SARS-CoV-2 in plasma samples from a diverse cohort of 128 individuals over 160 days using 14 binding and neutralization assays. For all assays, we found a consistent and strong effect of disease severity on antibody magnitude, with fever, cough, hospitalization, and oxygen requirement explaining much of this variation. We found that binding assays measuring responses to spike protein had consistently higher correlation with neutralization than those measuring responses to nucleocapsid, regardless of assay format and sample timing. However, assays varied substantially with respect to sensitivity during early convalescence and in time to seroreversion. Variations in sensitivity and durability were particularly dramatic for individuals with mild infection, who had consistently lower antibody titers and represent the majority of the infected population, with sensitivities often differing substantially from reported test characteristics (e.g., amongst commercial assays, sensitivity at 6 months ranged from 33% for ARCHITECT IgG to 98% for VITROS Total Ig). Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on the severity of the initial infection, timing relative to infection, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.


Sujets)
Fièvre , Toux
3.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-180966.v1

Résumé

Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic medical record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2.

4.
PLoS One ; 15(12): e0244177, 2020.
Article Dans Anglais | MEDLINE | ID: covidwho-999834

Résumé

This paper reports the results of a Bayesian analysis on large-scale empirical data to assess the effectiveness of eleven types of COVID-control policies that have been implemented at various levels of intensity in 40 countries and U.S. states since the onset of the pandemic. The analysis estimates the marginal impact of each type and level of policy as implemented in concert with other policies. The purpose is to provide policymakers and the general public with an estimate of the relative effectiveness of various COVID-control strategies. We find that a set of widely implemented core policies reduces the spread of virus but not by enough to contain the pandemic except in a few highly compliant jurisdictions. The core policies include the cancellation of public events, restriction of gatherings to fewer than 100 people, recommendation to stay at home, recommended restrictions on internal movement, implementation of a partial international travel ban, and coordination of information campaigns. For the median jurisdiction, these policies reduce growth rate in new infections from an estimated 270% per week to approximately 49% per week, but this impact is insufficient to prevent eventual transmission throughout the population because containment occurs only when a jurisdiction reduces growth in COVID infection to below zero. Most jurisdictions must also implement additional policies, each of which has the potential to reduce weekly COVID growth rate by 10 percentage points or more. The slate of these additional high-impact policies includes targeted or full workplace closings for all but essential workers, stay-at-home requirements, and targeted school closures.


Sujets)
COVID-19/épidémiologie , COVID-19/prévention et contrôle , Prévention des infections/législation et jurisprudence , Théorème de Bayes , Europe/épidémiologie , Politique de santé , Humains , Mexique/épidémiologie , Pandémies/prévention et contrôle , Amérique du Sud/épidémiologie , États-Unis/épidémiologie
5.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.01.20241695

Résumé

This paper reports the results of a Bayesian analysis on large-scale empirical data to assess the effectiveness of eleven types of COVID-control policies that have been implemented at various levels of intensity in 40 countries and U.S. states since the onset of the pandemic. The analysis estimates the marginal impact of each type and level of policy as implemented in concert with other policies. The purpose is to provide policymakers and the general public with an estimate of the relative effectiveness of various COVID-control strategies. We find that a set of widely implemented core policies reduces the spread of virus but not by enough to contain the pandemic except in a few highly compliant jurisdictions. The core policies include the cancellation of public events, restriction of gatherings to fewer than 100 people, recommendation to stay at home, recommended restrictions on internal movement, implementation of a partial international travel ban, and coordination of information campaigns. For the median jurisdiction, these policies reduce growth rate in new infections from an estimated 270% per week to approximately 49% per week, but this impact is insufficient to prevent eventual transmission throughout the population because containment occurs only when a jurisdiction reduces growth in COVID infection to below zero. Most jurisdictions must also implement additional policies, each of which has the potential to reduce weekly COVID growth rate by 10 percentage points or more. The slate of these additional high-impact policies includes targeted or full workplace closings for all but essential workers, stay-at-home requirements, and targeted school closures.


Sujets)
COVID-19
6.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.11.02.20223891

Résumé

We evaluated the performance of the Abbott BinaxNOWTM Covid-19 rapid antigen test to detect virus among persons, regardless of symptoms, at a public plaza site of ongoing community transmission. Titration with cultured clinical SARS-CoV-2 yielded a human observable threshold between 1.6x104-4.3x104 viral RNA copies (cycle threshold (Ct) of 30.3-28.8 in this assay). Among 878 subjects tested, 3% (26/878) were positive by RT-PCR, of which 15/26 had a Ct<30, indicating high viral load. 40% (6/15) of Ct<30 were asymptomatic. Using this Ct<30 threshold for Binax-CoV2 evaluation, the sensitivity of the Binax-CoV2 was 93.3% (14/15), 95% CI: 68.1-99.8%, and the specificity was 99.9% (862/863), 95% CI: 99.4-99.9%.


Sujets)
COVID-19
7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.265074

Résumé

We identify a mutation in the N gene of SARS-CoV-2 that adversely affects annealing of a commonly used RT-PCR primer; epidemiologic evidence suggests the virus retains pathogenicity and competence for spread. This reinforces the importance of using multiple targets, preferably in at least 2 genes, for robust SARS-CoV-2 detection. Article Summary LineA SARS-CoV-2 variant that occurs worldwide and has spread in California significantly affects diagnostic sensitivity of an N gene assay, highlighting the need to employ multiple viral targets for detection.

8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267500

Résumé

Early in the current pandemic, the D614G mutation arose in the Spike protein of SARS-CoV-2 and quickly became the dominant variant globally. Mounting evidence suggests D614G enhances viral entry. Here we use a direct competition assay with single-cycle viruses to show that D614G outcompetes the wildtype. We developed a cell line with inducible ACE2 expression to confirm that D614G more efficiently enters cells with ACE2 levels spanning the different primary cells targeted by SARS-CoV-2. Using a new assay for crosslinking and directly extracting Spike trimers from the pseudovirus surface, we found an increase in trimerization efficiency and viral incorporation of D614G protomers. Our findings suggest that D614G increases infection of cells expressing a wide range of ACE2, and informs the mechanism underlying enhanced entry. The tools developed here can be broadly applied to study other Spike variants and SARS-CoV-2 entry, to inform functional studies of viral evolution and vaccine development.

9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267724

Résumé

There is growing evidence pointing to the protective role of T cells against COVID-19. Vaccines eliciting targeted T cell responses have the potential to provide robust, long-lasting immunity. However, their design requires knowledge of the SARS-CoV-2-specific epitopes that can elicit a T cell response and confer protection across a wide population. Here, we provide a unified description of emerging data of SARS-CoV-2 T cell epitopes compiled from results of 8 independent studies of convalescent COVID-19 patients. We describe features of these epitopes relevant for vaccine design, while indicating knowledge gaps that can, in part, be augmented using prior immunological data from SARS-CoV. The landscape of SARS-CoV-2 T cell epitopes that we describe can help guide SARS-CoV-2 vaccine development as well as future immunological studies. A web-based platform has also been developed to complement these efforts.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267997

Résumé

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race towards the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. 2020 and Iwasaki et al. 2020. All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.


Sujets)
COVID-19 , Syndrome d'immunodéficience acquise
SÉLECTION CITATIONS
Détails de la recherche